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Abstract  
The paper is concerned with the numerical modelling of viscoelastic fluids in non-steady 

shear motions. The time dependent solutions for  3-constants differential models are obtained  at 

the startup of the planar Couette flows. The influences of: (i) the Reynolds number, (ii) the value 

of 𝜅 − material parameter (the ratio between the retardation time and relaxation time), and (iii) the 

initial condition for the normal stress, on the velocity and stresses distributions in the gap are 

investigated using the numerical solutions obtained with Mathematica software. The focus of the 

study is the analysis of the Jaumann model (characterized by the corotational derivative) in 

transitory simple shear rheological tests, as function of initial conditions for stresses. The steady 

solutions, corroborated with the non-monotonicity of the steady flow curve, confirm the kink 

presence in the steady velocity distributions and the formation of shear bandings at Re ≥ 1. The 

analyses of the strain- and stress-controlled simulations performed at different initial and boundary 

conditions offer possible explanations of some spurious data recorded in shear measurements of 

complex viscoelastic fluids. The findings have important consequences for performing transient shear 

experiments, specifically it is demonstrated that reproducibility and correlations between the tests 

require the control of initial normal stresses in the sample.  
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1. Introduction 

In this work we first introduce the well-known 3-constant differential models and briefly 

analyze their behavior in simple shear flow, in relation to the type of objective derivatives; this is 

followed by a discussion of the pioneering work of Tanner on transient start-up flow of a 

viscoelastic Oldroyd-B model (characterized by convective derivative). To extend Tanner's work, 

wherein a system of three partial differential equations collapses into one for the Oldroyd-B fluid, 

we numerically solve the full system of three equations (the equation of motion coupled with two 

constitutive equations) for the Jaumann (corotational) model. Different boundary conditions and 

parameters values are explored regarding their impacts on the time-space evolutions of the velocity 

and shear stress profiles in the Couette configuration. Especially for the Jaumann corotational 

model, the results demonstrate intriguing insights into the flow dynamics relating to material 

instability and shear banding formation. For the first time the dependencies of steady velocity and 

shear stress in the gap on the initial values of the normal stresses are highlight, result which may 

have important consequences in the analyzing and performing shear measurements in rotational 

rheometers.  

The differential 3-constants models1,2 for the extra-stress tensor T in a viscoelastic fluid 

have the generic expression,  

 𝜆1 𝐷𝐓𝐷𝑡 +  𝐓 = 2𝜂0𝜆2 𝐷𝐃𝐷𝑡 +  2𝜂0𝐃       (1) 

where: 𝐷∗𝐷𝑡 =  𝑑∗𝑑𝑡 −  𝛀 ∗ +  ∗ 𝛀 −  𝑎𝑖 (𝐃 ∗ +  ∗ 𝐃),        (2) 

are the objective Gordon-Schowalter time derivatives3-6 with D the strain rate tensor,  𝛀 the spin 

tensor and  𝑑∗𝑑𝑡 the material derivative. The material constants are: 𝜆1 – the relaxation time, 𝜆2 – the 

retardation time and 𝜂0 –  the viscosity coefficient. 

The parameters 𝑎𝑖 ∈  [−1, 1] characterize the type of objective derivatives for the extra-

stress and for the strain rate, respectively. The convected derivatives are defined for 𝑎𝑖 =  ±1 

(Oldroyd models with constant steady viscosity), 𝑎𝑖 =  0   defines the Jaumann (corotational) 

derivative and −1 < 𝑎𝑖 < 1 was considered by Johnson and Segalman7 for viscoelastic fluids with 

not affine deformation.  
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Different objective derivative in (1), 𝑎1 for extra − stress  and 𝑎2 for strain rate tensors 

(𝑎1 ≠ 𝑎2), were proposed by Balan and Fosdick8 (details in Annex A), who obtained for the 

isochoric viscometric flows the analytical solution of (1), 

 𝐓(𝑡) =  {e[𝛾(𝑡)− 𝛾(0)]𝐀[𝐓(0) −  2𝜅𝜂0𝐃(0)]e[𝛾(𝑡)− 𝛾(0)]𝐀T}e− 𝑡𝜆1 +  2𝜅𝜂0𝐃(𝑡) + 

            (3)   2𝜂0𝜆1  (1 −  𝜅 ) ∫ {e[𝛾(𝑡)− 𝛾(0)]𝐀𝐃(𝑠)e[𝛾(𝑡)− 𝛾(0)]𝐀T} e− 𝑡−𝑠𝜆1 𝑑𝑠𝑡
0                     
+ 4𝜂0𝜅 (𝑎1 −  𝑎2) ∫ {e[𝛾(𝑡)− 𝛾(0)]𝐀𝐃2(𝑠)e[𝛾(𝑡)− 𝛾(0)]𝐀T} e− 𝑡−𝑠𝜆1 𝑑𝑠𝑡

0    
with 𝐀 =  12  (1 + 𝑎1) 𝐞1⨂𝐞2 −  12  (1 − 𝑎1) 𝐞2⨂𝐞1 and 𝜅 =  𝜆2 𝜆1⁄ .  

In (3) 𝛾 is the strain, with �̇� ∶= 𝜕𝛾 𝜕𝑡 =⁄  √4|𝐼2|  the corresponding strain rate (or shear rate), 

where 𝐼2  is the second invariant of  D. 

The most important function in simple shear is the flow curve, i.e. the dependence of the 

shear stress 𝜎  as function of the shear rate �̇�. The steady solution of (3) for the flow curve 𝜎(�̇�) =  1+ 𝜅(1− 𝑎2)(𝜆�̇�)21+(1− 𝑎2)(𝜆�̇�)2 𝜂0�̇� ,       (4) 

(where 𝜆1 =  𝜆 and 𝑎1 = 𝑎2 = 𝑎), indicates that Oldroyd models  (𝑎 = ±1)  have a steady 

constant viscosity, since the Jaumann model (𝑎 = 0 ) discloses a shear thinning behavior. 

However, for 𝑎 = 0  and 𝜅 < 1/9 the function (4) becomes non-monotonic, the viscosity function 𝜂(�̇�) ≔  𝜎(�̇�) �̇�⁄  being identically in this case with the Carreau generalized Newtonian model1-3 

for a negative shear exponent (𝑛 = −1, respectively). 

The validity of the constitutive relation for a viscoelastic fluid sample  is established and 

confirmed in simple shear and extensional flows, modelled in rotational and capillary rheometers 

or in extensional devices.  

The rotational rheometers generate non-stationary shear flows of the tested fluid located 

between two parallel surfaces (plate-plate, concentric cylinders) or cone-plate configuration. In the 

limit of small gaps, this dynamic might be considered a  simple shear flow, i.e. the planar one-

dimensional  impulsive Couette flow between two infinite plates, Fig. 1. The solution to this 

problem for a viscoelastic fluid is not trivial since the equation of motion has to be coupled with 

the constitutive relation for the stresses9, in particular with the set of four differential equations 

corresponding to (1).  
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Fig.1. Simple shear Couette flow between two infinite parallel plates with one directional velocity distribution           𝑣𝑦 = 𝑣(𝑥, 𝑡), 𝑣𝑥 = 𝑣𝑧 = 0, and boundary conditions for the lower plate –  𝑣 = 0 at  𝑥 = 0, and for the upper plate – 𝑣 = 𝑣0 or 𝜎 = 𝜎0  at 𝑥 = ℎ, where 𝑣0 and 𝜎0 (the shear stress) are constant values. Adherence condition of the fluid 
at the walls is assumed. 

 

The starting point of the studies dedicated to the impulsive shear flows is the exact analytic 

solution of the Rayleigh-Stokes first problem for a pure viscous fluid9,10: the flow generated in an 

infinite viscous fluid (initially at rest) by an infinite planar plate put suddenly in motion with 

constant one directional velocity. This solution was later extended for steady/oscillatory imposed 

velocity at the boundaries of the Couette configuration11.  

To my knowledge, the first numerical solution of the Rayleigh-Stokes problem for a 

viscoelastic fluid was obtained by Roger Tanner (probably in his PhD thesis, Manchester 

University, 1961) and published in 196212. For a simple shear of the viscoelastic fluid (1), the final 

PDEs system in non-dimensional form is given by a set of three equations13, 𝑅𝑒 𝜕𝑣𝜕𝑡 = 𝜕𝜎𝜕𝑥        (5) 

𝜕𝑁𝜕𝑡 + 𝑁 = 2(1 − 𝑎2) [𝜎 𝜕𝑣𝜕𝑥 − 𝜅 (𝜕𝑣𝜕𝑥)2]     (6) 

𝜕𝜎𝜕𝑡 + 𝜎 = 𝜅 𝜕2𝑣𝜕𝑥𝜕𝑡 − (𝑁2 − 1) 𝜕𝑣𝜕𝑥       (7) 

with three unknowns: (i) velocity - 𝑣(𝑥, 𝑡), (ii) shear stress - 𝜎(𝑥, 𝑡), (iii) normal stress - 𝑁(𝑥, 𝑡) 

and two parameters: 𝜅 and 𝑎. Relation (5) is the equation of motion and (6)-(7) correspond to the 

constitutive relation (1), with the local shear rate: �̇� = 𝜕𝑣 𝜕𝑥⁄  (see Annex A). 
In (5)-(7) 𝑅𝑒 = 𝜌𝑣0ℎ 𝜂0⁄  is the Reynolds number and the reference quantities: 𝑣0, ℎ, 𝜆1, 𝜂0 𝜆1⁄  are used for velocity, space, time, and stresses, respectively. Without to lose the 

generality, the Deborah number (𝐷𝑒 = 𝜆1𝑣𝑜 ℎ⁄ ) is considered here equal to unity. In (6) and (7)  𝑁 = (1 − 𝑎)𝑁1 − 2𝑎𝑁2 represents the contribution of the normal stresses, 𝑁1 and 𝑁2 being the 

first and the second normal stresses differences1. 
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Roger Tanner obtained in the 1962 paper12 the solution for the Oldroyd-B model, 𝑎 = 1 in 

(2). In this case, from (6) results 𝑁~𝑓(𝑥)𝑒−𝑡, with 𝑓(𝑥) = 0  for zero initial condition of the 

normal stresses difference 𝑁2. Therefore, the system (5)-(7) is resumed to one single 3-order PDE, 𝑅𝑒 (𝜕2𝑣𝜕𝑡2 + 𝜕𝑣𝜕𝑡) = 𝜅 𝜕3𝑣𝜕𝑥2𝜕𝑡 + 𝜕2𝑣𝜕𝑥2     (8) 

with the velocity unknown. I mention here that Tanner used for the reference space scale the 

dimension √𝜂0𝜆1𝜌  , therefore Re = 1 in (8). 

The author analyzed in this paper the influence of 𝜅 − parameter on the solution of (8) 

and represents the time dependence of velocity at constant 𝑥, from 𝜅 = 0 (damped wave equation, 

Maxwell fluid) to 𝜅 = 1 (diffusion equation, Newtonian fluid). The numerical solutions for          0 < 𝜅 < 1  are discussed in relation to the asymptotic limit solutions and the impact of the  stored 

elastic energy on the transitory flow regime.   

Analyses of 𝜅 − parameter’s influence on the solutions for the viscoelastic Rayleigh-

Stokes problem were later reconsidered by Huilgol14 and Phan-Thien&Chew15, the methods to 

obtain the analytic solutions being reviewed by Renardy16 et. al. 

Analytic viscoelastic solutions for the Oldroyd-B model16-22 (or for the first and second 

order fluids23-25) were also obtained for different planar configurations and boundary conditions, 

but without to investigate explicitly the influence of the Reynolds number (most of the solutions 

being obtained in the limit 𝑅𝑒 → 0). 
In the present paper  numerical solutions of the system (5)-(7) are calculated with the 

Wolfram Mathematica 13.2 software for the boundary and initial conditions corresponding to the 

startup motion of the Couette flow.  The setting of the controlled parameters, in relation to the 

convergence and precision of solutions, and the influences of the initial/boundary conditions are 

analyses in Annex B. 

The goal of the study is to investigate the influences of parameters Re, 𝜅, 𝑎 and 

boundary/initial conditions on the time-space variations of the velocity and shear stress in the gap.  

The results evidence some interesting insights of the flow dynamics, especially for the corotational 

model (𝑎 = 0) in relation to the material instability and shear banding formation.  
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2. Results and Discussions 

2.1 Startup of Couette flows at constant boundary velocities 

The PDEs system (5)-(7) is solved in the domain 𝑥 ∈ [0, �̅�] and 𝑡 ∈ [0, 10), for the 

unknown functions: 𝑣(𝑥, 𝑡), 𝜎(𝑥, 𝑡) and 𝑁(𝑥, 𝑡), with boundary/initial conditions for velocities:  

(i) 𝑣(�̅�, 𝑡) =  𝑣0 = 1, (ii) 𝑣(0, 𝑡) =  0, (iii) 𝑣(𝑥, 0) = 𝑣0 ∙  H[𝑥 − �̅�],   (9) 

and the initial conditions for the stresses:  

(iv) 𝜎(𝑥, 0) = 𝜎0 = 0,  (v)  𝑁(𝑥, 0) = 𝑁0,      (10) 

at constant imposed values of Re, 𝑎 and 𝜅. 
 

2.2 Couette flow in a large gap  The Rayleigh-Stokes first problem is the impulsive flow in a semi-infinite space domain, i.e. 𝑥 ∈ [0, ∞), with 𝑣(0, 𝑡) =  𝑣0, 𝑣(∞, 𝑡) = 0 and zero initial stresses (where 𝑥 = 0 indicates the position of the plate). Since numerical solutions are obtained in a finite space domain, one considers in this paper a large gap, �̅� = 100, Re = 1 and the associated boundary conditions (9)-(10) with 𝑁0 = 0. The numerical solutions shown in Fig. 2 are good approximations in the vicinity of the moving plate of the analytic solutions for the Newtonian10,11 and Oldroyd-B12 fluids, respectively (see Annex B.1).  

 

Fig. 2. Space variation of the Newtonian and Oldroyd-B solutions for shear stress and velocity, at constant times        
(𝑡 = 0.2, 0.5, 1, 5, 7, 8, 10), in the vicinity of the moving plate, 90 < 𝑥 ≤ 100, at 𝑅𝑒 = 1 and 𝑣(100, 𝑡) = 1.  

 

Not relevant qualitative differences between the Newtonian (pure viscous fluid) and the 

Oldroyd-B solutions are observed as 𝜅 is decreasing from 1 (Newtonian case) to 0.1. Major 

differences appear at lower values of 𝜅,  𝜅 ≪ 1, as can be observed in Figs. 2-4. The results from 

Fig. 3.a,b and Fig. 4 are similar with the velocity distributions presented by Tanner12:    
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(i) solutions at  𝜅 = 0.2 and 𝜅 = 0.4 are consistent with the results from Tanner’s paper12, (as is 

shown in Fig. B.1), (ii) the solutions at 𝜅 ≤ 0.001 disclose the elastic wave generated in the 

domain with velocity  𝑐 = √ 𝜂0𝜌𝜆1 (the speed of the vortex sheet propagation14). 

 

Fig. 3. Time variations of velocity and shear stress at constant distance from the moving plate                                              
(𝑥 = 92, 95, 96.5, 98, 99, 99.5) at the onset of the flow, 𝑡 < 10, 𝑅𝑒 = 1 and  𝑣(100, 𝑡) = 1:  a) Oldroyd-B (𝑎 = 1), 𝜅 = 0.2; b) Oldroyd-B (𝑎 = 1), 𝜅 = 0.001; c) Jaumann (𝑎 = 0), 𝜅 = 0.001. 
 

 

For 𝜅 ≪ 1 the velocity 𝑣(𝑥, 𝑡) has a sharp increasing at 𝑡 = 𝑡∗ and 𝑥 = 𝑥∗ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

for both the Oldroyd-B and Jaumann models, Fig. 4 (where 𝑡 = 𝑡𝑐 is the time which corresponds 

to  𝜕2𝑣(𝑥, 𝑡) 𝜕𝑡2 = 0⁄ ). This result indicates the presence of the elastic wave. The difference 

between the two models is observable in the vicinity of 𝑡𝑐 , 𝑡 > 𝑡𝑐, where  a non-monotonic 

tendency of 𝜕𝑣(𝑥∗, 𝑡) 𝜕𝑡⁄  for the Jaumann’s model is remarked, see the marked regions from        
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Fig. 3.  The constant speed  c = 1 at Re = 1 for the elastic wave and the exponential distribution of 

velocity at t = 10 from Fig. 4.b,c are results confirmed by previous published solutions12,14,15.  

 

Fig. 4. (a) Influence of 𝜅-coefficient on the velocity distribution at 𝑥∗= 95 for 𝑎 = 1 and Re =1.  Here 𝑡𝑐  is the time 
corresponding to the change in curvature and 𝑐 is the wave speed of the vortex sheet propagation (at the limit 𝜅 → 0); 
(b) velocity distribution 𝑣(𝑥∗, 10), (c) dependence 𝑡∗(𝑥∗), 𝑥 ∈ [90 ÷ 100],  at  𝜅 = 0.001. 
 

One concludes that our solutions in large finite gaps are fair approximations  of the analytic 

and numerical solutions for the Newtonian and Oldroyd-B fluids in the vicinity of the moving 

plate, at the startup of the Rayleigh-Stokes flow. Also, the simulations confirm the elastic wave 

propagation in the flow domain for 𝜅 ≪ 1. The effect of elasticity and normal stresses are  

investigated in more details in the next paragraph, where solutions of the transitory Couette flows 

in finite geometry are analyzed.  
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2.3 Couette flow in a simple shear configuration 

The time dependent planar Couette flow in the domain 𝑥 ∈ [0, 1] , �̅� = 1 in (9), is a good 

approximation of the simple shear flow generated in rotational rheometers corresponding to the 

boundary conditions (9), an experiment assumed to be performed at an apparent constant shear 

rate, �̇�𝑐 =  1 at 𝑣0 = 1.  The time dependence of velocity between the two plates is present for any 

fluid models, but at  Re << 1 the steady state (represented by the linear velocity distribution) is 

considered in rheometry to be reached almost instantaneously, with a constant shear rate in the 

gap. In this case the equation (5) is neglected, and the dynamics is reduced to the time dependence 

of the stresses. Once the Re-number approach unity inertia becomes important and the corrections 

of the measured data in rheometry are needed26,27. 

Solutions of the system (5)-(7), with conditions (9)-(10) and 𝑁0 = 0, disclose for Re > 0.1 

oscillations of velocity and a longer time to achieve steady state for viscoelastic models in 

comparison to the Newtonian case, as is shown in Fig. 5 and Fig. 6. 

 

Fig. 5. Velocity distribution 𝑣(𝑥, 𝑡) in the gap (Re = 1 and 𝑣(1, 𝑡) = 𝑣0 = 1) for Newtonian, Oldroyd (𝑎 = 1,   𝜅 =0.01) and Jaumann (𝑎 = 0, 𝜅 = 0.01) fluids, at some constant values of 𝑥 ∈ (0,1]. 
 

We remark that steady state for 𝑎 = 1 is independent on the Re-number, the steady shear 

rate and the corresponding shear stress being constants in the gap. At 𝑎 = 0 the steady velocity 

distribution discloses for 𝑅𝑒 ≥ 1 a kink (i.e. discontinuity in the velocity derivative) in the vicinity 

of the moving wall, the steady shear stress is maintained constant in the gap but is decreasing with 

the increasing of Re-number (Fig. 6).  
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Fig. 6. Dependence of the velocity distribution 𝑣(𝑥, 𝑡) in the gap (𝑣(1, 𝑡) = 𝑣0 = 1,   𝜅 = 0.01) as function of the Re-
number; comparison between the Oldroyd fluid (𝑎 = 1) and the Jaumann fluid (𝑎 = 0).  
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  The dynamic of the Jaumann model is a direct consequence of the non-monotonic steady 

flow curve and the existence of the instability region 𝜎𝑚𝑖𝑛 ≤ 𝜎0 ≤ 𝜎𝑚𝑎𝑥, as is depicted in Fig. 7, 

where two distinctive values of the steady shear rates coexist at same value 𝜎0.  The influence of 

the non-monotonic steady flow curves on the flow instability28-31 and shear banding formation32-39 

were investigated in numerous papers in the last decades; is still a topic of interest in rheology, but 

not a subject for the present work. However, our results are connected to these topics since shear 

banding is associated with the discontinuity of the shear rate in the gap, therefore with the presence 

of at least one kink in the velocity distribution.  

Numerical solutions of PDEs system (with well posed boundary and initial conditions) are 

dependent of the numerical scheme, the space mesh, and the time step size. In Annex B.2 the 

influences of some setting parameters in Mathematica code are investigated. We found that the 

value of MaxStepSize (maximum time step size) is the most influential on the convergence and 

precision of the results (in our case the time distribution in the gap of velocity and stresses). We 

concluded that for MaxStepSize ≤ 0.001 the solutions are convergent, and precision is satisfactory. 

The final steady results in the interval 0.0002 ≤ 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 ≤ 0.001 do not differ 

qualitatively, the quantitative difference being below 1%, e.g. 𝜎0 ≅ 0.478 at 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 =0.001 and 𝜎0 ≅ 0.482 at 𝑀𝑎𝑥𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 = 0.0002 for 𝑣0 = 1.  
The simulations shown in the present paper were performed with the following parameters: 

InitialStepSize = 0.0001, MaxStepSize = 0.001 (or 0.0005). The confidence in results is also 

supported by the very good match of the final steady solutions of  (5)-(7) with the steady flow 

curve (4), Fig. 7. The marked areas in Fig. 7 indicate the domains of possible variations of the 

steady values of shear stress and shear rate, which depend on the computation precision, i.e. on the 

imposed value of MaxStepSize ≤ 0.001, and implicit on the number of grid points (fixed 

automatically by Mathematica to minimize/control the error in a given time interval).  
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Fig. 7. Non-monotonic steady state flow curve 𝜎(�̇�) of the Jaumann model, relation (4) with 𝑎 = 0 and 𝜅 = 0.01; for 𝑅𝑒 ≥ 1 two shear rates coexist at the same value of the shear stress, see Fig. 6. At Re = 1 the jump from B1 to B2 
takes place at 𝜎 = 𝜎0 ≅ 0.478; value which determines the plateau in the flow curve from �̇�1 ≅ 0.72 to �̇�2 ≅ 44. In 
the detail are shown two solutions of the velocity distributions in the vicinity of the kink (1 – MaxStepSize = 0.001, 2 
– MaxStepSize = 0.0002); oscillations with very small amplitudes (less 0.03%, however they are increasing with the 
increasing of the step size) are recorded before the kink.  

 

The evolutions in the gap of the unknown time-dependent functions from (5)-(7) at Re = 1 

are represented in Fig. 8. As Re-number is increasing, 𝑅𝑒 ≥ 1,  the position of the jump in shear 

rates is moved to lower values of shear stress, Fig.7. At Re < 1 the jump takes place in point A, the 

maximum of the first stable branch. The jump in shear rate at constant shear stress determines 

sometimes called the “plateau region” of the shear stress 𝜎0. At  𝜎 = 𝜎0 corresponds 3 steady 

solutions: B1/C1 are nodes, B2/C2 are foci, both being stable, with the middle unstable saddle 

solution (detailed analysis of this dynamics at Re = 0 is presented by Balan13). 

The steady flow curve depends on the values of  𝜅  and the positions of the jump (and 

implicit the value of the shear stress 𝜎0) is determined not only by Re-number, but also by the 

imposed boundary and initial conditions (subject investigated in the next paragraph). For three 

values of 𝜅, the steady flow curves, velocity and shear stress in the gap are represented at Re = 1 

in Fig. 9.  
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Fig. 8. Time variations in the gap of the solutions for velocity, shear stress and normal stress with time as parameter 
(𝑎 = 0, 𝜅 = 0.01; 𝑅𝑒 = 1). The time dependence of shear stress 𝜎 and normal stress 𝑁 at the moving plate with 𝑣(1, 𝑡) = 𝑣0 = 1, 𝜎(𝑥, 0) = 0, 𝑁(𝑥, 0) = 0, are also represented. 
 

At shear rate one, for 𝜅 = 0.1 the velocity distribution is linear, since the corresponding 

value of the shear stress, 𝜎 = 0.55, has a unique intersection with the flow curve. As 𝜅 is 

decreasing there are two stable solutions for the shear rate, therefore the kink is present in the 

velocity distribution. For very low values of  𝜅 (𝜅 = 0.001 in Fig. 9) the area of instability 

(associated with the influence of initial conditions to the steady state) is increasing (marked on the 

graph), the steady shear stress disclose oscillations in the gap and the velocity has kinks in the 

vicinity of the plates. The jump of the shear rate in the gap at constant shear stress determines the 

formation of one or two shear bands, which in our simulations are represented by thin layers 

attached to the plates. 
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 Fig. 9. Steady flow curves and the corresponding steady distributions of the velocity and shear stress in the gap at 𝜅 = 0.1; 0.01; 0.001 (𝑎 = 0, 𝑅𝑒 = 1;  𝑣(1, 𝑡) = 𝑣0 = 1, 𝜎(𝑥, 0) = 0, 𝑁(𝑥, 0) = 0). 
 

Similar results are obtained for any model with non-monotonic steady flow curve, in the 

presence or in the absence of elasticity40-47. Increasing instability (i.e. the jump takes place at a 

lower value of 𝜎0 than expected) due to random perturbations induced by the end-effects or 

modified boundary conditions are also observed48. The experiments and direct visualizations of 

the steady velocity distributions confirm the present simulations49-56.  

In conclusion, the dynamics of the analyzed Couette viscoelastic flows, under constant 

imposed velocities at the plates (so called in rheometry the strain-controlled test) and zero initial 

stresses in the gap, are dependent on three parameters: (i) 𝑎-parameter, which gives the type of the 

objective derivative, (ii) 𝜅-coefficient, the ratio between the retardation time and the relaxation 

time, (iii) the value of the Reynolds number. 
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3. Startup of Couette flows: the influences of boundary and initial conditions The previous analysis13 of the system (5)-(7) for 𝑎 = 0 at Re = 0  and constant shear 

stresses located in the unstable region proved that basin of attraction for the steady solutions is determined by the initial values of the normal stresses, Fig. 10.a (see also Fig. 7). Therefore, at one constant value 𝜎0 two steady solutions for the steady shear rate might coexisting, which indicates a jump between the stable branches of the flow curve, e.g. at 𝜎0 = 0.45 the jump takes place for 𝑁0 ≥ 1.4; at  𝜎0 = 0.5 the jump from A1 (the maximum of the first stable branch) to A2 is obtained for 𝑁0 ≥ 1.183, Fig. 10.b. Of course, the transitory regimes are different for A1 and A2, the time dependence of the shear rate discloses high oscillations for the A2 solution, which are not observed for A1 solution (time-parametric plots �̇�(𝑁) and 𝜎(𝑁) are also represented in Figs.10). In constant shear stress mode (called creeping if       𝑅𝑒 → 0) the initial shear rate is always zero at the beginning of the rheological test (�̇�(0) =�̇�0 = 0), but the control of the initial normal stresses is difficult in experiments due to initial squeezing of the visco-elasto-plastic samples in the gap of the rheometer before any rheological test performed in plate-plate or cone-plate configurations (it is important to remark that normal force is set automatically to zero by the software of the rheometer at the onset of the measurements). One concludes that dynamics of constitutive relation with non-monotonic steady flow curve (the Jaumann model in our case) discloses in creeping at least one bifurcation point (sensitive to the initial conditions). If simulations are performed at constant shear rate (strain-controlled experiment) the steady shear stress values are unique and some solutions are obtained on the unstable branch of the flow curve, which are not reached in the stress-controlled mode, Fig. 10.a. In steady state, at Re = 0, the shear stress and shear rate have constant values in the gap and the velocity distributions are linear (however, they are dependent on the initial value of 𝑁0). The coexisting in the gap of the two values for the steady shear rate is possible for the Jaumann model only if 𝑅𝑒 > 0; in this case the velocity distribution has at least one kink (as was shown in the previous paragraph). The same result was obtained in the absence of elasticity, for the generalized Newtonian fluids with non-monotonic flow curve, i.e. Carreau model with negative exponent47. 
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Fig. 10. (a) Steady flow curve 𝜎(�̇�) of the Jaumann model (𝑎 = 0, 𝜅 = 0.01); time-parametric plots: �̇�(𝑁) at 𝜎0 =0.515 and 𝜎(𝑁) at �̇� = 50, with 𝑁0 = 0, are also represented at Re = 0. (b) Dynamics �̇�(𝑁) at constant applied shear 
stress 𝜎0 = 0.5 and different initial conditions for the normal stress; the solutions A1 and A2 coexist at the same value 
of the shear stress for different initial normal stress, see the time dependences of the shear rate �̇�(𝑡). 
 The influences of the initial value of the normal stress 𝑁0 = 𝑁(𝑥, 0) at Re = 1 are shown in Fig. 11. For the Oldroyd model (𝑎 = 1) the influence of 𝑁0 is mainly observed during the transitory variation of the shear stress in the gap, which becomes wavy at high 𝑁0 values until reach the same unique steady state independently on 𝑁0. 
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Fig. 11. The influence of the initial conditions for the normal stress 𝑁 on the dynamics of the motion in the gap for 𝑎 = 1 and 𝑎 = 0 (Re = 1, 𝜅 = 0.01, strain-controlled test). The steady state in Oldroyd model is independent of the 
initial value of the normal stress, while the Jaumann model is sensitive to those values, even though the kink in the 
steady velocity distribution is always present.  
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The  Jaumann model (𝑎 = 0)  reaches faster the steady state with increasing of 𝑁0, but at lower steady value of the shear stress than for 𝑁0 = 0, and as consequence the steady velocity distribution is quantitatively different,  the kink being located at lower values of velocity, Fig. 11 (details in Annex B.2). During the transitory regime, the velocity oscillates in the gap for all viscoelastic models; in Fig. 12 the instantaneous velocities at instant 𝑡 = 2 are shown for two initial values of 𝑁0.  It is important to mention that at Re > 0 and constant initial shear rate in the gap, i.e. 𝑣(𝑥, 0) =  𝑣0 ∙ 𝑥 (linear velocity distribution at 𝑡 = 0), the steady state is not dependent on the normal stress 𝑁0 and numerical solutions are not stable if the initial shear rate corresponds to the unstable branch of the steady flow curve from Fig. 10.a. However, this strain-controlled test is just hypothetical, being impossible to be implemented in reality (even though it is considered in rheometry as an approximation of the Couette flow in the limit of Re  →0  ). Until now, the solutions at Re > 0 were obtained for constant applied velocities at the plates (strain-controlled experiment) with boundary conditions (9). Numerical simulations have been also performed imposing a constant value for the shear stress at the moving boundary: 𝜎0 = 𝜎(1, 𝑡), and keeping the adherence conditions of the fluid at the plates, so called the stress-controlled experiment (we mention that rotational rheometer controls the applied torque, which is related for each test geometry with corresponding shear stress1,2). A comparison between stress-controlled and strain-controlled simulations is shown in Fig. 13. If the input is 𝜎0 > 𝜎𝑚𝑎𝑥 (or 𝜎0 < 𝜎𝑚𝑖𝑛),  a single value for the shear stress corresponds to one of the stable branch of the flow curve (see Fig. 7); therefore, a steady linear velocity distribution is obtained in the gap (and a constant shear rate), with the value 𝑣0 = 𝑣(1, 𝑡) of velocity at the moving plate. This velocity is later used in the strain-controlled test, where the same steady constant value of the shear stress 𝜎0 is finally obtained in the gap. It is important to mention that a steady state for the stress-controlled simulation is reached after a longer time in comparison with the strain controlled one. In this case the application between the steady values on the moving plate is bijective for the two tests, the final steady states being independent on the type of boundary conditions and initial values of normal stress.   
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If 𝜎𝑚𝑖𝑛 ≤ 𝜎0 ≤ 𝜎𝑚𝑎𝑥, i.e. the imposed value of the shear stress is in the region of instability, the steady results are sensitive to the initial conditions for the normal stress 𝑁0. This statement is proved by the comparison of the simulations from Fig. 14 and Fig. 15, both at Re = 1. The controlled stress experiment at 𝜎0 = 0.478 generates different steady velocities at the moving plate: 𝑣0 = 0.72 (linear velocity distribution) and 𝑣0 = 4.2 (velocity distribution with a kink) for different values of the initial normal stress. The corresponding  strain-controlled tests are shown in Fig. 15. Only the steady velocity distribution for the input data:  𝑣0 = 0.72 and 𝑁0 = 0 gives an identical result with the corresponding stress-controlled experiment, the other velocities distributions being different. We remark the presence of two kinks in vicinity of the plates for 𝑣0 = 4.2 and 𝑁0 = 0.0. 

 

Fig. 12. Velocity distributions at 𝑡 = 2 and Re = 1 for two initial values of the normal stress (details from Fig. 11). At 

this instant the kink if formed only for 𝑁0 = 1.4. 
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Fig. 13. Shear stress and velocity variations in the gap at constant values of time (controlled stress and controlled 
strain tests for the Jaumann model at  𝜎0 > 𝜎𝑚𝑎𝑥, Re = 1, 𝜅 = 0.01, 𝑁0 = 0). During the transitory regime the shear 
stress discloses oscillations in both experiments, but the final steady state is the same. 
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Fig. 14. Velocity distributions in the stress-controlled experiment (marked with “0” for 𝑁0 = 0 and with “1” for 𝑁0 =1.4) at 𝜎0 = 0.475 ( Re = 1, 𝑎 = 0, 𝜅 = 0.01). 
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Fig. 15. Velocity distributions in the strain-controlled experiment (marked with “0” for 𝑁0 = 0 and with “1” for 𝑁0 =1.4) at two input values of velocity: 𝑣0 = 0.72 and 𝑣0 = 4.44, respectively (Re = 1, 𝑎 = 0, 𝜅 = 0.01). 
 

One concludes that initial value of normal stress, 𝑁0 > 0, has a significant influence during 

the transitory motion and determines the final steady values of the shear rate and stresses. 

The present simulations prove that viscoelastic fluids embedded in some internal network 

structure, samples included in the category of soft solids (as gels, creams/greases, dense 

suspensions) may produce confusing results during their characterization in shear flows. The 

apparent lack of correlation between strain- and stress-controlled tests is usually related with the 

slip of the sample at solid surface. This might be not the only cause of wall depletion, since is 

difficult to distinguish the real slip from the existence of a thin shear band of sample in the very 

vicinity of the wall 30,31,42,47. If the measurements are interpreted in the framework of constitutive 

relations with non-monotonic flow curves, keeping valid the hypothesis of wall adherence, the 

data possibly indicate the material instability of the sample in the range of tested shear rates and 

shear stresses. In this case we have to admit that two or three shear rates coexist in the gap under 

the same shear stress.   
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4. Final remarks and conclusions  The paper was focused on the analysis of numerical solutions for  3-constants differential viscoelastic models in transient planar Couette flow, as function of the 𝑅𝑒-number and the material parameter 𝜅 (the ratio between the retardation and relaxation times). The main aim was to investigate the effect of boundary and initial conditions on the time dependent velocity distributions in the gap for the Jaumann model (corotational derivative), in comparison to the Oldroyd model (convected derivative).  The non-monotonicity of the steady flow curve generates in the case of the Jaumann model the presence of kinks in velocity distribution, their existence and location being dependent on the 𝑅𝑒-number and the initial values for normal stresses (at constant 𝜅 − parameter). The numerical findings are consistent with previous theoretical and experimental results published in literature and offer the possibility to investigate in more detail the instability phenomena and shear banding formation,  which are observed in the flows of some complex fluids.  One main conclusion of the work is the importance of the initial normal stresses in the rheometry of fluids which are subject to material instability and/or spurious phenomena57-59. The control of squeezing force in plate-plate or cone-plate configurations becomes necessary at the beginning of rheological tests to avoid possible confusions between real and apparent slipping (or shear banding formations) of the samples during the shear experiments 37,38,54,59,60.   The modelling and analysis of unsteady simple shear/elongational flows of viscoelastic/complex fluids are the theoretical background of applied rheology. The startup of Couette flow between two parallel plates is a fair approximation for the dynamics of simple 
shear flows used in rotational rheometry. The validation of the solutions for viscoelastic/plastic 

models in this configuration using the experimental data is compulsory to establish the proper 

constitutive relation for the samples under investigation.   

From a historical perspective61, Tanner’s paper12 had a great impact in rheology, revealing 

the importance of the analytic and numeric time dependent viscoelastic solutions for developing 

the measurement techniques. The analysis and modelling of transient tests in stress/strain- 

controlled modes, in shear and elongational motions, are indispensable for a complete rheological 

characterization of complex fluids.  
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Since my PhD period spent at TU Darmstadt (1990-1991), I have a constant interest in modelling 

viscoelastic fluids in transitory flows and Roger’s paper12 was one of the first I studied, a reference work 

for me. Most probably, I wouldn’t submitted to a journal a paper on startup of Couette flow if  Physics of 

Fluids would not be dedicated a special issue to Professor Roger Tanner. 

I met Roger a couple of times in Cambridge and in Wales; I was never close to him, but I still 

remember a short dialogue with Roger in Liverpool, at the British Society Meeting dedicated to Complex 

Flows of Complex Fluids in March 2008. It was during an evening visit of the participants at the Merseyside 

Maritime Museum; I took the opportunity to give then my appreciation to Roger for the 1962 paper.  

He was smiling: 

 “ … is nice for me to hear that somebody is still interested in my old work, but do not take too 

seriously the papers published at the beginning of the scientist’s carrier …” 

My answer (in playful mode): I always took your paper seriously; I am interested to read the first 

published papers of great scientists … 

He touched gently with the hand my shoulder, keeping the smile on his face … 

“… let’s go for the dinner, my young colleague”. 

Last time we crossed the eyes at Portmeirion in 2011, at the 20th anniversary of Institute of Non-

Newtonian Fluids from Wales.  

This paper is dedicated to Professor Roger Tanner. Tanner’s viscoelastic solutions for the 

Rayleigh problem published in 1962 was a value pioneering work in applying numerical 

computations in viscoelasticity and had a major contribution in a better understanding of fluids 

elasticity in transitory motions.  

 

Supplementary Material 
 

Two Annexes are attached to the paper as supplement material: 

(i) ANNEX A – Non-dimensional PDEs system contains the justification of using different 
objective derivatives in the constitutive relation (1) and the procedure to obtain its equivalent 
PDEs system for a simple shear flow in non-dimensional form, relations (6)-(7), respectively. 

(ii) ANNEX B – PDEs solutions with Mathemtica software presents details of using the 

numerical code. There are 2 sections in which the numerical results are analyzed:  

1) B1. Comparison with Tanner solutions.  
2) B2. Startup of Couette flow for the Jaumann viscoelastic model, 

B.2.1 Influences of the values for StartingStepSize, MaxStepSize and PlotPoints, 
B.2.2 Influence of boundary conditions, 
B.2.3 Influence of initial value for the normal stress. 
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