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Abstract

The paper is concerned with the numerical modelling of viscoelastic fluids in non-steady
shear motions. The time dependent solutions for 3-constants differential models are obtained at
the startup of the planar Couette flows. The influences of: (i) the Reynolds number, (ii) the value
of k — material parameter (the ratio between the retardation time and relaxation time), and (iii) the
initial condition for the normal stress, on the velocity and stresses distributions in the gap are
investigated using the numerical solutions obtained with Mathematica software. The focus of the
study is the analysis of the Jaumann model (characterized by the corotational derivative) in
transitory simple shear rheological tests, as function of initial conditions for stresses. The steady
solutions, corroborated with the non-monotonicity of the steady flow curve, confirm the kink
presence in the steady velocity distributions and the formation of shear bandings at Re > 1. The
analyses of the strain- and stress-controlled simulations performed at different initial and boundary
conditions offer possible explanations of some spurious data recorded in shear measurements of
complex viscoelastic fluids. The findings have important consequences for performing transient shear
experiments, specifically it is demonstrated that reproducibility and correlations between the tests

require the control of initial normal stresses in the sample.
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1. Introduction
In this work we first introduce the well-known 3-constant differential models and briefly

analyze their behavior in simple shear flow, in relation to the type of objective derivatives; this is
followed by a discussion of the pioneering work of Tanner on transient start-up flow of a
viscoelastic Oldroyd-B model (characterized by convective derivative). To extend Tanner's work,
wherein a system of three partial differential equations collapses into one for the Oldroyd-B fluid,
we numerically solve the full system of three equations (the equation of motion coupled with two
constitutive equations) for the Jaumann (corotational) model. Different boundary conditions and
parameters values are explored regarding their impacts on the time-space evolutions of the velocity
and shear stress profiles in the Couette configuration. Especially for the Jaumann corotational
model, the results demonstrate intriguing insights into the flow dynamics relating to material
instability and shear banding formation. For the first time the dependencies of steady velocity and
shear stress in the gap on the initial values of the normal stresses are highlight, result which may
have important consequences in the analyzing and performing shear measurements in rotational
rheometers.

The differential 3-constants models'-? for the extra-stress tensor T in a viscoelastic fluid
have the generic expression,

120+ T = 2102, 22 + 210D (1)

where:

D+

dx
Frinirintl Ul *Q— q;(D*+ *D), 2)

are the objective Gordon-Schowalter time derivatives>® with D the strain rate tensor, € the spin
dx . . . . . .
tensor and e the material derivative. The material constants are: 1, — the relaxation time, 1, — the

retardation time and 75 — the viscosity coefficient.

The parameters a; € [—1, 1] characterize the type of objective derivatives for the extra-
stress and for the strain rate, respectively. The convected derivatives are defined for a; = +1
(Oldroyd models with constant steady viscosity), a; = 0 defines the Jaumann (corotational)
derivative and —1 < @; < 1 was considered by Johnson and Segalman’ for viscoelastic fluids with

not affine deformation.
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Different objective derivative in (1), a, for extra — stress and a, for strain rate tensors
(ay # ay), were proposed by Balan and Fosdick® (details in Annex A), who obtained for the
isochoric viscometric flows the analytical solution of (1),
t
T(t) = {elr©=7OM[T(0) — 2k7,D(0)]el @~ YOIAT}e™ 35 1 217,D(2) +
. 3)
t—s
Mo 1y f [elr@- @D (5)elr©-yOWT) ¢~ Ty gs
/11 0

t
+dnok (a; — ay) f [elr©-r@IAD2 (5)elr©- YOI} & To g
0

with A = % (1+ay) e,®e, — %

(1-a;)e,®e;andk = A,/A,.
In (3) y is the strain, with y := dy/dt = /4|I,| the corresponding strain rate (or shear rate),
where I, is the second invariant of D.

The most important function in simple shear is the flow curve, i.e. the dependence of the

shear stress o as function of the shear rate y. The steady solution of (3) for the flow curve

o 1+ k(1-a?)Ap)?
o) = Tasananz oY “4)

(where 4; = A and a; = a, = a), indicates that Oldroyd models (a = +1) have a steady
constant viscosity, since the Jaumann model (a = 0) discloses a shear thinning behavior.
However, fora = 0 and k < 1/9 the function (4) becomes non-monotonic, the viscosity function
n(y) == o(y)/y being identically in this case with the Carreau generalized Newtonian model'-3
for a negative shear exponent (n = —1, respectively).

The validity of the constitutive relation for a viscoelastic fluid sample is established and
confirmed in simple shear and extensional flows, modelled in rotational and capillary rheometers
or in extensional devices.

The rotational rheometers generate non-stationary shear flows of the tested fluid located
between two parallel surfaces (plate-plate, concentric cylinders) or cone-plate configuration. In the
limit of small gaps, this dynamic might be considered a simple shear flow, i.e. the planar one-
dimensional impulsive Couette flow between two infinite plates, Fig. 1. The solution to this
problem for a viscoelastic fluid is not trivial since the equation of motion has to be coupled with
the constitutive relation for the stresses’, in particular with the set of four differential equations

corresponding to (1).
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Fig.1. Simple shear Couette flow between two infinite parallel plates with one directional velocity distribution
v, = v(x,t),v, = v, = 0, and boundary conditions for the lower plate — v = 0 at x = 0, and for the upper plate —
v =v,o0rag =0, atx = h, where v, and g, (the shear stress) are constant values. Adherence condition of the fluid
at the walls is assumed.

The starting point of the studies dedicated to the impulsive shear flows is the exact analytic
solution of the Rayleigh-Stokes first problem for a pure viscous fluid*'’: the flow generated in an
infinite viscous fluid (initially at rest) by an infinite planar plate put suddenly in motion with
constant one directional velocity. This solution was later extended for steady/oscillatory imposed
velocity at the boundaries of the Couette configuration'’.

To my knowledge, the first numerical solution of the Rayleigh-Stokes problem for a
viscoelastic fluid was obtained by Roger Tanner (probably in his PhD thesis, Manchester
University, 1961) and published in 1962'2. For a simple shear of the viscoelastic fluid (1), the final

PDEs system in non-dimensional form is given by a set of three equations'?,
v do

R€E=£ (5)
N v N =21—ad)|e? — i ()

E-HV =2(1—a )[aax K(ax) ] (6)
do % N ov

Sro=ra-(G-1)% @)

with three unknowns: (i) velocity - v(x, t), (ii) shear stress - a(x, t), (iii) normal stress - N (x, t)
and two parameters: k and a. Relation (5) is the equation of motion and (6)-(7) correspond to the
constitutive relation (1), with the local shear rate: y = dv/dx (see Annex A).

In (5)-(7) Re = pvyh/n, is the Reynolds number and the reference quantities:
Vo, h, 11,m0/ 2, are used for velocity, space, time, and stresses, respectively. Without to lose the
generality, the Deborah number (De = A,v,/h) is considered here equal to unity. In (6) and (7)
N = (1 — a)N; — 2aN, represents the contribution of the normal stresses, N; and N, being the

first and the second normal stresses differences'.
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Roger Tanner obtained in the 1962 paper'? the solution for the Oldroyd-B model, a = 1 in
(2). In this case, from (6) results N~f(x)e™t, with f(x) = 0 for zero initial condition of the

normal stresses difference N,. Therefore, the system (5)-(7) is resumed to one single 3-order PDE,

9%y v a3v 3%y
Re (S5 +57) = kymg + 53 ®

with the velocity unknown. I mention here that Tanner used for the reference space scale the

dimension 71031 , therefore Re = 1 in ().

The author analyzed in this paper the influence of k¥ — parameter on the solution of (8)
and represents the time dependence of velocity at constant x, from k¥ = 0 (damped wave equation,
Maxwell fluid) to k¥ = 1 (diffusion equation, Newtonian fluid). The numerical solutions for
0 <k <1 are discussed in relation to the asymptotic limit solutions and the impact of the stored
elastic energy on the transitory flow regime.

Analyses of k — parameter’s influence on the solutions for the viscoelastic Rayleigh-
Stokes problem were later reconsidered by Huilgol'* and Phan-Thien&Chew'3, the methods to
obtain the analytic solutions being reviewed by Renardy'¢ et. al.

Analytic viscoelastic solutions for the Oldroyd-B model'®?2 (or for the first and second
order fluids**?2) were also obtained for different planar configurations and boundary conditions,
but without to investigate explicitly the influence of the Reynolds number (most of the solutions
being obtained in the limit Re — 0).

In the present paper numerical solutions of the system (5)-(7) are calculated with the
Wolfram Mathematica 13.2 software for the boundary and initial conditions corresponding to the
startup motion of the Couette flow. The setting of the controlled parameters, in relation to the
convergence and precision of solutions, and the influences of the initial/boundary conditions are
analyses in Annex B.

The goal of the study is to investigate the influences of parameters Re, k, a and
boundary/initial conditions on the time-space variations of the velocity and shear stress in the gap.
The results evidence some interesting insights of the flow dynamics, especially for the corotational

model (a = 0) in relation to the material instability and shear banding formation.
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2. Results and Discussions
2.1 Startup of Couette flows at constant boundary velocities
The PDEs system (5)-(7) is solved in the domain x € [0,%] and ¢ € [0,10), for the

unknown functions: v(x, t), o(x, t) and N(x, t), with boundary/initial conditions for velocities:
N v(xt) = vy =1, (1) v(0,t) = 0, (iii) v(x, 0) = vy - H[x — x], O
and the initial conditions for the stresses:
(iv) o(x,0) =0y =0, (v) N(x,0) = N,, (10)

at constant imposed values of Re, a and .

2.2 Couette flow in a large gap

The Rayleigh-Stokes first problem is the impulsive flow in a semi-infinite space
domain, i.e. x € [0, ), with v(0,t) = vy, v(oo,t) = 0 and zero initial stresses (where x = 0
indicates the position of the plate). Since numerical solutions are obtained in a finite space
domain, one considers in this paper alarge gap, ¥ = 100, Re= 1 and the associated boundary
conditions (9)-(10) with N, = 0. The numerical solutions shown in Fig. 2 are good
approximations in the vicinity of the moving plate of the analytic solutions for the

Newtonian01! and Oldroyd-B12 fluids, respectively (see Annex B.1).

g 0y Newtonian

10 Oldroyd-B. x = 0.01

time > v\

06

0.4

02

0.2

92 o4 % 98 x 100 92 94 % 8 . 10

Fig. 2. Space variation of the Newtonian and Oldroyd-B solutions for shear stress and velocity, at constant times
(t=0.2,05,1,5,7,8,10), in the vicinity of the moving plate, 90 < x < 100, at Re = 1 and v(100,t) = 1.

Not relevant qualitative differences between the Newtonian (pure viscous fluid) and the
Oldroyd-B solutions are observed as k is decreasing from 1 (Newtonian case) to 0.1. Major
differences appear at lower values of k, k < 1, as can be observed in Figs. 2-4. The results from

Fig. 3.a,b and Fig. 4 are similar with the velocity distributions presented by Tanner'?:
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(i) solutions at x = 0.2 and x = 0.4 are consistent with the results from Tanner’s paper'?, (as is

shown in Fig. B.1), (ii) the solutions at k¥ < 0.001 disclose the elastic wave generated in the

domain with velocity ¢ = ’:70 (the speed of the vortex sheet propagation').
1

Velocity - v Shear stress- o

0e

time [-] time [-]

08
)

086

04

02
0.1 / F/—
8 8 1 4 3 [} 10

F] 4 (] 2

Fig. 3. Time variations of velocity and shear stress at constant distance from the moving plate
(x =92,95,96.5,98,99,99.5) at the onset of the flow, t < 10, Re = 1 and v(100,t) = 1: a) Oldroyd-B (a = 1),
Kk = 0.2; b) Oldroyd-B (a = 1), k = 0.001; ¢) Jaumann (a = 0), k = 0.001.

For k « 1 the velocity v(x, t) has a sharp increasing at t = t* and x = x* = constant,
for both the Oldroyd-B and Jaumann models, Fig. 4 (where t = t, is the time which corresponds
to 9%v(x,t)/dt? = 0). This result indicates the presence of the elastic wave. The difference
between the two models is observable in the vicinity of t., t > t., where a non-monotonic

tendency of dv(x*,t)/dt for the Jaumann’s model is remarked, see the marked regions from
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Fig. 3. The constant speed ¢ =1 at Re = 1 for the elastic wave and the exponential distribution of

velocity at £ = 10 from Fig. 4.b,c are results confirmed by previous published solutions'?!%!3,
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Fig. 4. (a) Influence of k-coefficient on the velocity distribution at x*= 95 for a = 1 and Re =1. Here t, is the time
corresponding to the change in curvature and c is the wave speed of the vortex sheet propagation (at the limit x — 0);
(b) velocity distribution v(x*, 10), (c) dependence t*(x*), x € [90 + 100], at k = 0.001.

One concludes that our solutions in large finite gaps are fair approximations of the analytic
and numerical solutions for the Newtonian and Oldroyd-B fluids in the vicinity of the moving
plate, at the startup of the Rayleigh-Stokes flow. Also, the simulations confirm the elastic wave
propagation in the flow domain for k¥ < 1. The effect of elasticity and normal stresses are
investigated in more details in the next paragraph, where solutions of the transitory Couette flows

in finite geometry are analyzed.
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2.3 Couette flow in a simple shear configuration
The time dependent planar Couette flow in the domain x € [0,1],% = 1in (9), is a good

approximation of the simple shear flow generated in rotational rheometers corresponding to the
boundary conditions (9), an experiment assumed to be performed at an apparent constant shear
rate, ., = 1 atwvy = 1. The time dependence of velocity between the two plates is present for any
fluid models, but at Re << 1 the steady state (represented by the linear velocity distribution) is
considered in rheometry to be reached almost instantaneously, with a constant shear rate in the
gap. In this case the equation (5) is neglected, and the dynamics is reduced to the time dependence
of the stresses. Once the Re-number approach unity inertia becomes important and the corrections
of the measured data in theometry are needed?®?.

Solutions of the system (5)-(7), with conditions (9)-(10) and N, = 0, disclose for Re > 0.1
oscillations of velocity and a longer time to achieve steady state for viscoelastic models in

comparison to the Newtonian case, as is shown in Fig. 5 and Fig. 6.

Newtonian
05

o5 10 15 tme 20

Fig. 5. Velocity distribution v(x, t) in the gap (Re = 1 and v(1,t) = v, = 1) for Newtonian, Oldroyd (a = 1, k =
0.01) and Jaumann (a = 0,k = 0.01) fluids, at some constant values of x € (0,1].

We remark that steady state for a = 1 is independent on the Re-number, the steady shear
rate and the corresponding shear stress being constants in the gap. At a = 0 the steady velocity
distribution discloses for Re = 1 a kink (i.e. discontinuity in the velocity derivative) in the vicinity
of the moving wall, the steady shear stress is maintained constant in the gap but is decreasing with

the increasing of Re-number (Fig. 6).



Accepted to Phys. Fluids 10.1063/5.0173510

ACCEPTED MANUSCRIPT

10.1063/5.0173510

PLEASE CITE THIS ARTICLE AS DOI

Physics of Fluids

05
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10

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

Publishing

AIP

\



ing

AlIP
lﬁ_ Publish

The dynamic of the Jaumann model is a direct consequence of the non-monotonic steady
flow curve and the existence of the instability region g,,;;, < 0y < Oppay, as is depicted in Fig. 7,

where two distinctive values of the steady shear rates coexist at same value g,. The influence of

28-31 32-39

the non-monotonic steady flow curves on the flow instability and shear banding formation
were investigated in numerous papers in the last decades; is still a topic of interest in rheology, but
not a subject for the present work. However, our results are connected to these topics since shear
banding is associated with the discontinuity of the shear rate in the gap, therefore with the presence

of at least one kink in the velocity distribution.

Numerical solutions of PDEs system (with well posed boundary and initial conditions) are
dependent of the numerical scheme, the space mesh, and the time step size. In Annex B.2 the
influences of some setting parameters in Mathematica code are investigated. We found that the
value of MaxStepSize (maximum time step size) is the most influential on the convergence and
precision of the results (in our case the time distribution in the gap of velocity and stresses). We
concluded that for MaxStepSize < 0.001 the solutions are convergent, and precision is satisfactory.
The final steady results in the interval 0.0002 < MaxStepSize < 0.001 do not differ
qualitatively, the quantitative difference being below 1%, e.g. g, = 0.478 at MaxStepSize =
0.001 and gy = 0.482 at MaxStepSize = 0.0002 for v, = 1.

The simulations shown in the present paper were performed with the following parameters:
InitialStepSize = 0.0001, MaxStepSize = 0.001 (or 0.0005). The confidence in results is also
supported by the very good match of the final steady solutions of (5)-(7) with the steady flow
curve (4), Fig. 7. The marked areas in Fig. 7 indicate the domains of possible variations of the
steady values of shear stress and shear rate, which depend on the computation precision, i.e. on the
imposed value of MaxStepSize < 0.001, and implicit on the number of grid points (fixed

automatically by Mathematica to minimize/control the error in a given time interval).

11
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Fig. 7. Non-monotonic steady state flow curve o(y) of the Jaumann model, relation (4) with @ = 0 and k = 0.01; for
Re > 1 two shear rates coexist at the same value of the shear stress, see Fig. 6. At Re = 1 the jump from B1 to B2
takes place at 0 = g, = 0.478; value which determines the plateau in the flow curve from y; = 0.72 to y, = 44. In
the detail are shown two solutions of the velocity distributions in the vicinity of the kink (1 — MaxStepSize = 0.001, 2
— MaxStepSize = 0.0002); oscillations with very small amplitudes (less 0.03%, however they are increasing with the
increasing of the step size) are recorded before the kink.

The evolutions in the gap of the unknown time-dependent functions from (5)-(7) at Re = 1
are represented in Fig. 8. As Re-number is increasing, Re = 1, the position of the jump in shear
rates is moved to lower values of shear stress, Fig.7. At Re < 1 the jump takes place in point A, the
maximum of the first stable branch. The jump in shear rate at constant shear stress determines
sometimes called the “plateau region” of the shear stress o,. At o = g, corresponds 3 steady
solutions: B1/C1 are nodes, B2/C2 are foci, both being stable, with the middle unstable saddle
solution (detailed analysis of this dynamics at Re = 0 is presented by Balan'?).

The steady flow curve depends on the values of x and the positions of the jump (and
implicit the value of the shear stress ) is determined not only by Re-number, but also by the
imposed boundary and initial conditions (subject investigated in the next paragraph). For three
values of k, the steady flow curves, velocity and shear stress in the gap are represented at Re = 1

in Fig. 9.

12
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Fig. 8. Time variations in the gap of the solutions for velocity, shear stress and normal stress with time as parameter
(a =0,k =0.01; Re = 1). The time dependence of shear stress o and normal stress N at the moving plate with
v(1,t) =vy=1,0(x,0) =0, N(x,0) = 0, are also represented.

At shear rate one, for ¥ = 0.1 the velocity distribution is linear, since the corresponding
value of the shear stress, 0 = 0.55, has a unique intersection with the flow curve. As k is
decreasing there are two stable solutions for the shear rate, therefore the kink is present in the
velocity distribution. For very low values of x (x = 0.001 in Fig. 9) the area of instability
(associated with the influence of initial conditions to the steady state) is increasing (marked on the
graph), the steady shear stress disclose oscillations in the gap and the velocity has kinks in the
vicinity of the plates. The jump of the shear rate in the gap at constant shear stress determines the
formation of one or two shear bands, which in our simulations are represented by thin layers

attached to the plates.

13
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Fig. 9. Steady flow curves and the corresponding steady distributions of the velocity and shear stress in the gap
atk = 0.1;0.01;0.001 (a =0,Re = 1; v(1,t) = vy =1,0(x,0) =0, N(x,0) = 0).

Similar results are obtained for any model with non-monotonic steady flow curve, in the
presence or in the absence of elasticity*®*’. Increasing instability (i.e. the jump takes place at a
lower value of o, than expected) due to random perturbations induced by the end-effects or
modified boundary conditions are also observed*. The experiments and direct visualizations of
the steady velocity distributions confirm the present simulations**-%,

In conclusion, the dynamics of the analyzed Couette viscoelastic flows, under constant
imposed velocities at the plates (so called in rheometry the strain-controlled test) and zero initial
stresses in the gap, are dependent on three parameters: (i) a-parameter, which gives the type of the
objective derivative, (ii) k-coefficient, the ratio between the retardation time and the relaxation

time, (iii) the value of the Reynolds number.

14



3. Startup of Couette flows: the influences of boundary and initial conditions
The previous analysis?3 of the system (5)-(7) for a = 0 at Re= 0 and constant shear

stresses located in the unstable region proved that basin of attraction for the steady solutions is
determined by the initial values of the normal stresses, Fig. 10.a (see also Fig. 7). Therefore,
at one constant value g, two steady solutions for the steady shear rate might coexisting,
which indicates a jump between the stable branches of the flow curve, e.g. at o, = 0.45 the
jump takes place for N, = 1.4; at o, = 0.5 the jump from Al (the maximum of the first stable
branch) to A2 is obtained for N, > 1.183, Fig. 10.b. Of course, the transitory regimes are
different for A1 and A2, the time dependence of the shear rate discloses high oscillations for
the A2 solution, which are not observed for Al solution (time-parametric plots y(N) and
o(N) are also represented in Figs.10). In constant shear stress mode (called creeping if
Re — 0) the initial shear rate is always zero at the beginning of the rheological test (y(0) =
Yo = 0), but the control of the initial normal stresses is difficult in experiments due to initial
squeezing of the visco-elasto-plastic samples in the gap of the rheometer before any
rheological test performed in plate-plate or cone-plate configurations (it is important to
remark that normal force is set automatically to zero by the software of the rheometer at the
onset of the measurements).

One concludes that dynamics of constitutive relation with non-monotonic steady flow
curve (the Jaumann model in our case) discloses in creeping at least one bifurcation point
(sensitive to the initial conditions). If simulations are performed at constant shear rate
(strain-controlled experiment) the steady shear stress values are unique and some solutions
are obtained on the unstable branch of the flow curve, which are not reached in the stress-
controlled mode, Fig. 10.a. In steady state, at Re = 0, the shear stress and shear rate have
constant values in the gap and the velocity distributions are linear (however, they are
dependent on the initial value of N).

The coexisting in the gap of the two values for the steady shear rate is possible for the
Jaumann model only if Re > 0; in this case the velocity distribution has at least one kink (as
was shown in the previous paragraph). The same result was obtained in the absence of
elasticity, for the generalized Newtonian fluids with non-monotonic flow curve, i.e. Carreau

model with negative exponent*’.

15
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Fig. 10. (a) Steady flow curve o(y) of the Jaumann model (a = 0, x = 0.01); time-parametric plots: y(N) at g, =
0.515 and a(N) aty = 50, with N, = 0, are also represented at Re = 0. (b) Dynamics y(N) at constant applied shear
stress 0y = 0.5 and different initial conditions for the normal stress; the solutions A1 and A2 coexist at the same value
of the shear stress for different initial normal stress, see the time dependences of the shear rate y(t).

The influences of the initial value of the normal stress N, = N(x,0) at Re = 1 are
shown in Fig. 11. For the Oldroyd model (a = 1) the influence of N, is mainly observed during
the transitory variation of the shear stress in the gap, which becomes wavy at high N, values

until reach the same unique steady state independently on Nj,.
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N0)=0

v — velocity

10
N — normal stress
o5t

Fig. 11. The influence of the initial conditions for the normal stress N on the dynamics of the motion in the gap for
a=1and a =0 (Re=1, k = 0.01, strain-controlled test). The steady state in Oldroyd model is independent of the
initial value of the normal stress, while the Jaumann model is sensitive to those values, even though the kink in the
steady velocity distribution is always present.
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The Jaumann model (a = 0) reaches faster the steady state with increasing of N,, but
at lower steady value of the shear stress than for N, = 0, and as consequence the steady
velocity distribution is quantitatively different, the kink being located at lower values of
velocity, Fig. 11 (details in Annex B.2). During the transitory regime, the velocity oscillates in
the gap for all viscoelastic models; in Fig. 12 the instantaneous velocities at instant t = 2 are
shown for two initial values of Nj,.

It is important to mention that at Re > 0 and constant initial shear rate in the gap, i.e.
v(x,0) = v, - x (linear velocity distribution at t = 0), the steady state is not dependent on
the normal stress N, and numerical solutions are not stable if the initial shear rate
corresponds to the unstable branch of the steady flow curve from Fig. 10.a. However, this
strain-controlled test is just hypothetical, being impossible to be implemented in reality
(even though it is considered in rheometry as an approximation of the Couette flow in the
limit of Re =0 ).

Until now, the solutions at Re > 0 were obtained for constant applied velocities at the
plates (strain-controlled experiment) with boundary conditions (9). Numerical simulations
have been also performed imposing a constant value for the shear stress at the moving
boundary: g, = d(1,t), and keeping the adherence conditions of the fluid at the plates, so
called the stress-controlled experiment (we mention that rotational rheometer controls the
applied torque, which is related for each test geometry with corresponding shear stress2).
A comparison between stress-controlled and strain-controlled simulations is shown in Fig.
13. If the input is gy > 0y (O 0y < G1pin), a single value for the shear stress corresponds
to one of the stable branch of the flow curve (see Fig. 7); therefore, a steady linear velocity
distribution is obtained in the gap (and a constant shear rate), with the value vy = v(1,t) of
velocity at the moving plate. This velocity is later used in the strain-controlled test, where
the same steady constant value of the shear stress oy is finally obtained in the gap. It is
important to mention that a steady state for the stress-controlled simulation is reached after
a longer time in comparison with the strain controlled one. In this case the application
between the steady values on the moving plate is bijective for the two tests, the final steady
states being independent on the type of boundary conditions and initial values of normal

stress.
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If Opin < 09 < Ojmay 1-€. the imposed value of the shear stress is in the region of
instability, the steady results are sensitive to the initial conditions for the normal stress N,.
This statement is proved by the comparison of the simulations from Fig. 14 and Fig. 15, both
at Re = 1. The controlled stress experiment at o, = 0.478 generates different steady
velocities at the moving plate: v, = 0.72 (linear velocity distribution) and v, = 4.2 (velocity
distribution with a kink) for different values of the initial normal stress. The corresponding
strain-controlled tests are shown in Fig. 15. Only the steady velocity distribution for the input
data: vy = 0.72and N, = 0 gives an identical result with the corresponding stress-controlled
experiment, the other velocities distributions being different. We remark the presence of two

kinks in vicinity of the plates for vy = 4.2 and N, = 0.0.

1.0 a=1,N(0)=14

Time=2

0.8

0.6

0.4
a=0,N(0)=14

02 a=0,N(0)=0

0.2 0.4 086 0.8 1.0

Fig. 12. Velocity distributions at t = 2 and Re = 1 for two initial values of the normal stress (details from Fig. 11). At
this instant the kink if formed only for N, = 1.4.

19

AlIP
Publishing

£



AlIP
/ Publishing

INPUT - 0(1,t) = og= 0.52 o — shear strass 'NPUT- v(1,0) = vy =49.6

v - velocity
= Steady:v(1)=49.6 3500, »
20 Steady: o (1) = 0.52
0.7
15
10 0.6
? 0.5
10
0.2 04 06 oy 08 10 -
o — shear stress  p - velocity v(1)=49.6

048

02 04 06 08 10
gap

Fig. 13. Shear stress and velocity variations in the gap at constant values of time (controlled stress and controlled
strain tests for the Jaumann model at 0y > 0pqy, Re =1, k = 0.01, Ny = 0). During the transitory regime the shear
stress discloses oscillations in both experiments, but the final steady state is the same.
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0" 00
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0.2 04 0.6 0.8 1.0

Fig. 14. Velocity distributions in the stress-controlled experiment (marked with “0” for Ny = 0 and with “1” for N, =
1.4)at o, = 0475 (Re=1,a = 0, k = 0.01).

21



AlIP
é/_ Publishing

This is the author’s peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0173510

10 vy =0.72,N; =14 v - velocity INPUT: v, = 0.72

0
¥ 2072

OUPUT-0: g & 0.478 ¥

3

35

OUPUT-1: gy & 0.401

0.2 04 0.6 0.8 1.0

v - velocity INPUT: v = 4.4

v €[37,38]

QUPUT-0: g = 0.401

OUPUT-1: g5 = 0.39 7 €[0.48,0.5]

0.2 04 0.6 0.8 1.0

Fig. 15. Velocity distributions in the strain-controlled experiment (marked with “0” for N, = 0 and with “1” for N, =
1.4) at two input values of velocity: v, = 0.72 and v, = 4.44, respectively (Re=1,a = 0, k = 0.01).

One concludes that initial value of normal stress, Ny > 0, has a significant influence during
the transitory motion and determines the final steady values of the shear rate and stresses.

The present simulations prove that viscoelastic fluids embedded in some internal network
structure, samples included in the category of soft solids (as gels, creams/greases, dense
suspensions) may produce confusing results during their characterization in shear flows. The
apparent lack of correlation between strain- and stress-controlled tests is usually related with the
slip of the sample at solid surface. This might be not the only cause of wall depletion, since is
difficult to distinguish the real slip from the existence of a thin shear band of sample in the very
vicinity of the wall 3314247 If the measurements are interpreted in the framework of constitutive
relations with non-monotonic flow curves, keeping valid the hypothesis of wall adherence, the
data possibly indicate the material instability of the sample in the range of tested shear rates and
shear stresses. In this case we have to admit that two or three shear rates coexist in the gap under

the same shear stress.
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4. Final remarks and conclusions
The paper was focused on the analysis of numerical solutions for 3-constants

differential viscoelastic models in transient planar Couette flow, as function of the Re-
number and the material parameter x (the ratio between the retardation and relaxation
times). The main aim was to investigate the effect of boundary and initial conditions on the
time dependent velocity distributions in the gap for the Jaumann model (corotational
derivative), in comparison to the Oldroyd model (convected derivative).

The non-monotonicity of the steady flow curve generates in the case of the Jaumann
model the presence of kinks in velocity distribution, their existence and location being
dependent on the Re-number and the initial values for normal stresses (at constant x —
parameter). The numerical findings are consistent with previous theoretical and
experimental results published in literature and offer the possibility to investigate in more
detail the instability phenomena and shear banding formation, which are observed in the
flows of some complex fluids.

One main conclusion of the work is the importance of the initial normal stresses in
the rheometry of fluids which are subject to material instability and/or spurious
phenomena>7-5%. The control of squeezing force in plate-plate or cone-plate configurations
becomes necessary at the beginning of rheological tests to avoid possible confusions
between real and apparent slipping (or shear banding formations) of the samples during the
shear experiments 3738545960,

The modelling and analysis of unsteady simple shear/elongational flows of
viscoelastic/complex fluids are the theoretical background of applied rheology. The startup
of Couette flow between two parallel plates is a fair approximation for the dynamics of simple
shear flows used in rotational rheometry. The validation of the solutions for viscoelastic/plastic
models in this configuration using the experimental data is compulsory to establish the proper
constitutive relation for the samples under investigation.

From a historical perspective®!, Tanner’s paper'? had a great impact in rheology, revealing
the importance of the analytic and numeric time dependent viscoelastic solutions for developing
the measurement techniques. The analysis and modelling of transient tests in stress/strain-
controlled modes, in shear and elongational motions, are indispensable for a complete rheological

characterization of complex fluids.
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Since my PhD period spent at TU Darmstadt (1990-1991), I have a constant interest in modelling
viscoelastic fluids in transitory flows and Roger’s paper'? was one of the first I studied, a reference work
for me. Most probably, I wouldn’t submitted to a journal a paper on startup of Couette flow if Physics of
Fluids would not be dedicated a special issue to Professor Roger Tanner.

I met Roger a couple of times in Cambridge and in Wales; I was never close to him, but I still
remember a short dialogue with Roger in Liverpool, at the British Society Meeting dedicated to Complex
Flows of Complex Fluids in March 2008. It was during an evening visit of the participants at the Merseyside
Maritime Museum; I took the opportunity to give then my appreciation to Roger for the 1962 paper.

He was smiling:

“ ... is nice for me to hear that somebody is still interested in my old work, but do not take too
seriously the papers published at the beginning of the scientist’s carrier ...”

My answer (in playful mode): I always took your paper seriously; I am interested to read the first
published papers of great scientists ...

He touched gently with the hand my shoulder, keeping the smile on his face ...

“... let’s go for the dinner, my young colleague”.

Last time we crossed the eyes at Portmeirion in 2011, at the 20" anniversary of Institute of Non-
Newtonian Fluids from Wales.

This paper is dedicated to Professor Roger Tanner. Tanner’s viscoelastic solutions for the
Rayleigh problem published in 1962 was a value pioneering work in applying numerical

computations in viscoelasticity and had a major contribution in a better understanding of fluids

elasticity in transitory motions.

Supplementary Material

Two Annexes are attached to the paper as supplement material:

(i) ANNEX A - Non-dimensional PDEs system contains the justification of using different
objective derivatives in the constitutive relation (1) and the procedure to obtain its equivalent
PDE:s system for a simple shear flow in non-dimensional form, relations (6)-(7), respectively.

(i) ANNEX B — PDEs solutions with Mathemtica software presents details of using the
numerical code. There are 2 sections in which the numerical results are analyzed:

1) B1. Comparison with Tanner solutions.

2) B2. Startup of Couette flow for the Jaumann viscoelastic model,
B.2.1 Influences of the values for StartingStepSize, MaxStepSize and PlotPoints,
B.2.2 Influence of boundary conditions,
B.2.3 Influence of initial value for the normal stress.
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